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Viscous flow near a cusped corner 
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The slow motion of fluid exterior to a cylinder lying on a wall is considered for a 
variety of boundary conditions. In  particular, the solution is obtained for the 
case when the motion far from the cylinder is one of uniform shear. Calculations 
are made for the force and the moment exerted by the fluid on the cylinder. The 
asymptotic form of the flow both far from the cylinder and near the cusped corners 
is presented. The flow sufficiently near a cusp consists of a sequence of eddies of 
rapidly diminishing strength, and the solution of another boundary-value prob- 
lem supports the view that the nature of this eddy system is independent of 
conditions far from the cusp. The nature of inviscid flow with uniform vorticity 
in cusped corners is also considered. 

1. Introduction 
The region exterior to a circular cylinder lying on a plane wal!, shown in 

figure 1 (a), is particularly well suited to solving Stokes flow boundary-value 
problems. The geometry is not only of interest in itself, but has the special feature 
of cusped corners. Sufficiently near such a cusped corner any plane, incompress- 
ible, viscous flow must be slow enough to be governed by the Stokes approxima- 
tion. Thus the asymptotic forms, near the cusp, of solutions of the Stokes equa- 
tion in the geometry of figure l (a)  reveal the nature of the local behaviour of 
solutions of the Navier-Stokes equations near the corner. 

The central boundary-value problem of this paper is the slow motion past a 
circular cylinder when the flow far from the cylinder is one of uniform shear 
(figure 2 (a)). With the aid of this solution, the nature of viscous flow in a cusped 
.corner is investigated. The flow consists of a sequence of eddies of rapidly 
diminishing strength. Moffatt (19644  considered viscous flow near a sharp corner 
between two planes on which a variety of boundary conditions were imposed. 
When both planes were at rest near the corner, and some mechanism far from the 
.corner agitated the fluid, an eddy system was found to exist near the corner. It 
is reasonable to assume that the nature of viscous flow near a corner is determined 
.only by the geometry and the motion of the local boundaries. The solution of a 
second boundary-value problem with the geometry of figure 1 (a) will be presented 
to  support this assertion. 

That the flow region of figure 1 (a )  is suited to solving slow-motion problems 
derives from the fact that the region can be mapped onto an infinite strip. The 
transformation 

w = u + iv = i(x + iy)-l, (1.1) 
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from plane Cartesian co-ordinates (2, y) to co-ordinates (u, v) has the property 
that, if $(x, y) is a solution of the biharmonic equation, V:,v$ = 0, then 
Y(u, v) = (u2 + v2) $(x, y) is a solution of V&,Y = 0, where 

3 -  G C  

Y 

V 

I 

(b) 

FIGURE 1. (a) The flow region,F, in the (2, y)-plane and (a) its mapping 
onto the (u, v)-plane. 

(1.1) maps the upper half of the (2, y)-plane exterior to the circle 

y p  = 3 (r2 = 2 2  + y2) 

onto an infinite strip in the (u, v)-plane, lying between u = 0 and u = 4 (figure 1). 

2. Two simple boundary-value problems 
Before considering the problem of shear flow past a circular cylinder, it  is 

worthwhile to look at some simpler problems in which either the cylinder or the 
wall is in motion near the cusp. These problems provide a means of presenting the 
mathematical apparatus that will be suitable for solving the more complicated 
cases considered in this paper. They also provide an interesting contrast to the 
cases where the boundaries are at rest near the cusp, in that no eddy structure is 
observed if the boundaries are in motion near the corner. The problems of this 
section, and others, were studied by Frazer (1926), who used a method different 
from that employed here. 

Sliding wall 

Consider first a fixed cylinder and a wall that slides with velocity h(x). It will be 
noted that unless h(x)  = constant the wall stretches as well as slides. We seek a. 
stream function, @(x, y), satisfying V:,v@ = 0 in the flow region of figure 1 (a). 
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If the x- and y-components of velocity are - a@/ay and a@lax respectively, then 
on y = 0: 

= 0, a$/ay = -h(x), (2.1) 

(2.2) and on y / r2  = 4: @ = a@/an = 0, 

where ajan denotes the normal derivative. 

boundary conditions that on u = 0: 
In the (u, v)-plane, with Y = (u2+v2) $, the problem is Vt,,Y = 0 with the 

Y = 0 ,  a r i a u  = - ~ ( v ) ,  (2.3) 

(2.4) and on u = 4: Y = aYpu = 0, 

where H(v)  = h(v-1). The problem will be solved with the aid of a Fourier trans- 
form, here defined by 

(2.5) 

W A 

Y(u, k) = 1 e-ikuY(u, v) dv ,  

Y(u, v) = '1 2;rr 

$(u, k )  is the solution of the equation 

-m 

eikw $(u, k) dk. 

with the boundary conditions on u = 0: 
h A 

Y = 0, aypu = -I@), (2.7) 
h A 

and on u = 4: Y = ay/au = 0. (2.8) 
The four linearly independent solutions of (2.6) are eku, e-ku, ueku and ue-ku. The 
solution of (2.6) subject to (2.7) and (2.8) is 

9 = 2I?(k) G(u, k ) / P ( k ) ,  (2.9) 
where P(k)  = 4sinh24k-k2, (2.10) 

G(u, k )  = k(4-u)sinhku-2usinh$ksinhk(+-u). (2.11) 

If the wall slides without stretching, h(x) = 1 and, with the aid of Lighthill 
(1960), B(k) = 2;rr&(k), where S denotes the Dirac function. Then 9 vanishes for 
k + 0, so that 

The stream function is $ = - 4y[ (y / r2 )  - &I2. (2.13) 

As r + a, @+ - y;  i.e. far from the cylinder the motion is that of a uniform 
stream in the x-direction. As r+O, @-to, a$/ax+O and the value of a$/ay 
depends on the path on which the origin is approached. The solution (2.9) will 
also be directly applicable to a problem to be considered in $4. 

A 

Y = - STU(U - &)'&(k). (2.12) 

Rotating cylinder 

If the wall is stationary, and the cylinder rotates with constant angular velocity, 
the motion is determined by solving (2.6) subject to the conditions that on u = 0: 

9 = aypu = 0, (2.14) 

and on u = 4: 9 = 0, a9pu = -2;rra(k). (2.15) 

A 
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In  the (u, *)-plane, this flow is a simple Couette flow, as is the motion correspond- 
ing to (2.13). By a method similar to that above, the solution is found to be 

$ = 2y2r-2( 1 - 2 y r 3 .  (2.16) 

As r-+ a, 4 N 2y2/r2, so that the velocities tend to zero. As r+O, $ and a$/ax 
tend to zero, and a$/ay approaches a value which is dependent upon the path on 
which the origin is approached. It should be noted that y/r2 < 4 in the flow region. 

3. Shear flow past a cylinder 
We will investigate the flow of figure 2 (a). The cylinder and the wall y = 0 are 

at rest, and far from the cylinder the x- and y-components of velocity are y and 0 
respectively. x, the stream function for this motion, is the solution of V&x = 0 
subject to the boundary conditions that on y = 0 and on y/r2 = 4: 

and as r+m: 
x = ax/an = 0, 

x = - 4y2+o(r2). 

(4 ( b )  
FIGURE 2. Flow about a cylinder tangent to a plane, in which (a)  far from the cylinder 
the motion is one of uniform shear and ( b )  the flow is induced by the motion of sleeves in 
the wall regions a < z < b and - b < z < -a. 

Alternatively, the problem can be formulated in terms of Y = ( X l t - 2 )  + &(y2/r2), 
so that @ is a solution of (2.6) with the boundary conditions on u = 0:  

h A 

YJ- = ay/au = 0, (3.3) 

and on u = 3: Y = %re-41kl, 4 aYP/au = & r ( l - ~ ~ k ~ ) e - 4 ~ k ~ .  (3.4) 

__ G(u, k) dk. (3.5) 

h A 

I n  terms of YP, the boundary-value problem is more straightforward, and leads 
to the solution 

(3.5) also follows directly from (2.9) with 

h(x) = + T ~ ( v ) ,  A(k) = in, 

which describes the behaviour at u = 0, v = 0 of the uniform shear whose stream 
function is $ = - Qy2. 

The features of (3.5) that are of special interest are the force and moment 
exerted by the fluid on the cylinder, the nature of the far field (r-+co) and the 
motion in the cusped corners ( r  -+ 0) .  The force in the y-direction exerted by the 
fluid on the cylinder is zero. Since x is an even function of x, the pressure in the 
fluid is an odd function of x. Neither the pressure forces nor the viscous forces 
can exert a net lift on the cylinder. 
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The force in the x-direction and the moment (about the origin) exerted by the 
fluid on the cylinder are 

and 

respectively. 
The force and moment are made dimensionless with respect to the dynamic 

viscosity, the cylinder radius and the mean shear. The integrals are evaluated 
along the right half of the cylinder. The contribution of the pressure forces to the 
net force and moment exerted by the fluid on the cylinder are identical. The 
expressions for the force and moment can be simplified by substituting (3.5) for 
x and interchanging the order of integration (this procedure can be rigorously 
justified). The net force in the x-direction is 477 and the moment is 67r. The force 
must be applied along the line y = 1.5 to produce the required moment. The net 
force and moment exerted by the fluid exterior to the circle r2 = 2yc (1 < c < co) 
on the system interior to the circle is independent of c. 

If a denotes the cylinder radius, the limit ria + 0 may be interpreted as one for 
which the cylinder shrinks to a point singularity, and it is reasonable to assume 
that the stream function (3.5) has the asymptotic form, as r+m,  

where 8 is the usual polar co-ordinate defined by x = r cos 8 and y = r sin 8. The 
individual terms of (3.7) must satisfy x = axja6' = 0 on 8 = 0 and on 8 = 7r and 
be solutions of the biharmonic equation. These considerations lead to the expecta- 
tion that 
x " - 1  2y 2 +A,sin28 

m 

n=l  
+ 2 r-"[A,sinBsin(n+ 1)8+B,{(n+2)sinnO-nsin(n+2)8}]. (3.8) 

Starting from (3.5), it  is possible to show that the asymptotic form of x is in- 
deed given by (3.8). Since G(u, k)/F(k) is an even function of k ,  x can be deter- 
mined as an integral over the range 0 to co. As r-fco, JwI -+ 0 and we seek to 
expand the integrand of (3.5) in powers of w and W ,  where the bar denotes a 
complex conjugate. Care must be taken in carrying out this expansion so as not 
to encounter unbounded integrals. The calculation may be organized in the 
following way. We write 

where 
k )  = k) + G,(% 4, (3.9) 

(3.10) G1(u, k )  = {u(sinh k: - k - 2 sinh2 #) + Bk} sinh ku - +uk2e-ku 7 

G2(u, k )  = - &uP(k)e-ku. (3.11) 

For k -+ 0, G, is analytic and O(k4) so that G,/F is analytic. 
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GI is o(ek) as k+w. The contribution of G, to the integrand may be integrated 
explicitly. (3.5) may now be written in the form 

(3.12) 

As (3.12) clearly shows, the separation of G(u, k )  into G,(u, k )  + G,(u, k) splits 
the stream function into one for the uniform shear and a stream function for the 
motion induced by the cylinder. The expansion of (3.12) in powers of w and W 
can now be carried out in a straightforward manner, and, upon returning to the 
variables ( r ,  0) ,  we find that 

sin3 8 ( -  l)+ 
2 r-"(sin (n + 1) S] ___ 

(n+ I)! an+1 
x = - gr2 sin2 O +a, sin2 8- __ p1 +sin O 

6r t%-2,4, ... 

+ r-m{(n + 2) sin n8 - n sin (n + 2) 81 ( -  a(n 1PcnS1)A, + 2)! (3.13) 
n-3.5, ... 

where __ (sinh k - k - 2 sinh2 gk + &k2) dk, (3.14) 

(3.15) 

&a 

n (n + 3)! 

1 0.2418 
3 0.0782 
5 0.0522 
7 0.0415 
9 0.0352 

Pa 
(n + 3)! 
___ 

2.4220 
1.2341 
1-0648 
1.0200 
1.0063 

TABLE 1. Coefficients in the far field expansion of the stream 
function for the shear flow past a cylinder 

Bounds on the coefficients a, and p, can be determined by observing that, for 
k 2 0, 12(2 + k4) > k4ek/P(k)  and e-k 2 1 - k + $k2 - $k3. These bounds are 
0 < a, < 7(n+ 3)! and 0 < p, < 13(n+ 3)! for n = 1,3 ,5 ,  ..., which establishes 
the convergence of (3.13) for r > 1. 

The values of a,/(n+ 3)! and @,/(fit- 3)! are given in table 1 for n = 1 ,3 ,5 ,7  
and 9. 

From (3.13) it  is clear that the Stokes approximation to  the shear flow past a 
cylinder lying on a wall is not a uniformly valid one. The presence of the wall is 
sufficient however to determine a unique solution. This is not the case if the 
cylinder is placed in an unbounded shear flow, as was pointed out by Bretherton 
(1962). 

(3.5) may be evaluated by the theorem of residues to yield a representation of 
x which is most convenient for discussing the flow near a cusp. The contour is 
completed by constructing the remaining three sides of a large square in the half 
plane 9 ( k )  2 0 if v 3 0 or Y ( k )  6 0 if o 6 0. The integrand of (3.5) has simple 
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poles at  the zeros of F ( k )  (although P(0)  = 0, the point k = 0 is not a pole of the 
integrand). A discussion of the roots of the eigenvalue equation 

F ( k )  = 4sinh2Qk-k2 = 0, (3.16) 

is given by Buchwald (1964), who provides references to the original papers. If 
k is a root of (3.16), then so are - k, & and - &. Thus locating the roots in the first 
quadrant suffices to locate them throughout the k-plane. 

It is convenient to factor P(k)  and consider the equations sinh A + h = 0 and 
sinhp - p = 0. A, will denote a root of the equation sinh h + h = 0, with positive 
real and imaginary parts, and ,un a root of sinh p - p = 0, also with positive real 
and imaginary parts. The roots are ordered so that 0 < 9(A , )  < $(A,) ..., and 
0 < .%(pl) < 9(p2) .... The roots of (3.16) are f 2hn, 5 2Xn, i- 2pn, ? 2pn. A, to 
A,, and p1 to ,us inclusive, are listed in table 2. These values were obtained from 
Buchwald’s paper and are presented here for convenience. 

n. Al 

1 2.25073 +i4.21239 
2 3.10319 +i10.7125 
3 3-55108 +i17.0734 
4 3.85880 + i23.3984 
5 4.09370 f i29-7081 

TABLE 2. The first five roots of sinh 

Pn 
2-76858 +i7*49768 
3.35221 +i13.9000 
3.71677 +i20.2385 
3.98314 + i26-5545 
4.19325 + i32.8597 

h+h = 0 and sinhp-p = 0 

The theorem of residues leads to the result that, for v >/ 0, (3.5) becomes 

1. (3.17) 
exp(i2pnv) G(u, 2pn) - exp (i2Anv) G(u, Zh,) 

An cosh2 QA, 

From (3.17), we have, as v+co (we will be interested in the right-hand corner), 

mr2i exp (i2A1v) G(u, 2A,) 
X ”  -9- 

4 A, Gosh2 Qh, 

The physical significance of (3.18) will be pointed out in $5. 

(3.18) 

4. The motion induced by two moving sleeves inserted in the wall 
To support the assertion that the character of the flow, sufficiently near the 

cusps, is independent of the manner in which the fluid is agitated far from the 
cusps, we investigate the problem depicted in figure 2 ( b ) .  This problem was 
suggested by the work of Moffatt (19643). 

The stream function, +, is a solution of V&+ = 0 and it must satisfy on 
y / r2  = 4: 
and on y = 0: 

(4.1) 9 = a+/& = 0, 

0 (121 < a ,  1x1 > b, b > a > 0 ) ,  

a < z < b) ,  

1 ( - b < x <  -a).  
(4.2) 
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The solution of this problem follows directly from (2.9) by noting that here 

* 

B(k) = ik - 2  (cos~-cos- k 

Then @ is given by 
- zr2 m eikv 

(4.3) 

(4.4) 

This may be evaluated by the theorem of residues. The quantity (cos k/a - cos klb)  
is written in terms of exponentials, so that the single integral of (4.4) is split into 
the sum of four integrals, the integrands of which are 

exp(ikCv+ (l/a)I}, exp(ik[v- (lh)]}, -exp(ik[e+ (lP)l}, 
and 

each multiplied by the same function of u and k .  The contours for these four 
integrals are each closed by a large square in that half of the k-plane that prevents 
the exponential factor from approaching infinity as the size of the square becomes 
indefinitely large. The poles of the integrand of (4.4) are identical to those of the 
integrand of (3.5). Application of the residue theorem to (4.4) leads to the result 
that for v > l/a 

- exp {ik[v - (l/b)]} 

2 n=l hi cosh2 &A, 

The flow near the right-hand corner is given by the asymptotic form of (4.5) as 
vu3 co, which is 

(4.6) 
rzexp (iZA,v) G(u, ZA,) 2h, 

(,OS -- - cos 5) b . ' @ 2  A: cosh2 &Al a 

5. Flow near a cusped corner 

stream function, @, of any viscous incompressible flow must be given by 
As is indicated by (3.18) and (4-6), sufficiently near the cusped corner, the 

@ N @Kr2 exp (i2Alv) G(u, ZA,), (5.1) 

where K is a complex constant depending on A, and conditions far from the cor- 
ner. If we approach the origin of the (x, y)-plane by moving along the circle 

y /r2  = 1/2c = u (c > 1 and z 0 ) ,  

then from (5.1) with A, = t1 + ir,, @ behaves like r2 exp ( - 2y,z /r2)  (except for 
multiplicative factors of O(1)). The ratio of the neglected inertia terms to the 
viscous terms retained by the Stokes approximation provides the criterion for 
determining the region of validity of the approximation. This criterion is 

R = r2exp[-2y,z/r2] < I, 

where R is the Reynolds number based on the radius of the circular cylinder and 
the characteristic velocity in the problem (the uniform shear times the cylinder 
radius). 
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(5.1) describes the flow near the corner as a sequence of eddies of diminishing 
strength. If v = V(u) is the equation of a curve on which @ = 0, then $ is also 
zero on the curve 

nn 
v = V(u)+- (n = 1,2,3,...). 

261 

The cusp region, v+ a, is divided up into a repetitive cell pattern, the boundaries 
of each cell being curves on which $ = 0. Enclosed within each cell is an eddy. 
The situation is depicted in figure 3. Let Yn denote the value of the transformed 
stream function, Y, at  the centre of the nth cell (under some arbitrary system of 
labelling in which n increases with v). Then r 2 Y n  represents the flux between the 

U =f- 

FIGURE 3. The sequence of eddy-containing cells in the region v + a. 

boundary and the centre of the nth cell, and the ratio lYn+l/Ynl is a convenient 
measure of the intensity of consecutive eddies. From (5.1), this ratio is 

exp ( - nr1161). 
The intensities of consecutive eddies form a geometric progression with the ratio 
e--587969. 

6. Flow with uniform vorticity in a cusped corner 
The nature of inviscid, incompressible flow with uniform vorticity near a 

sharp corner was investigated by Fraenkel(l961). In  this section we extend that 
work to include the flow near a cusped corner. The solutions to be presented here 
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contrast interestingly with those of the previous sections, in that no sequence of 
corner eddies is found for flows with uniform vorticity. 

The region of interest is T -+ 0, 0 < y < Axv, x 2 0, v > 1 ; the stream function 
satisfies Vt,v$ = - 1 within this region, and is zero on the boundaries. The 
function 

satisfies the differential equation and is zero on 8 = 0. It is also zero on the curve 

( V +  1) sin2 8 whose equation is 
yv-1 = ~ 

A sin(v+1)#’ 
(6.2) may be rewritten in the form 

sin(v+1)8 
( v +  l)(sinO)(cos8)”’ 

y = AX’ 

from which it is clear that, as 8+ 0, (6.2) becomes y = Ax”. 
The solution (6.1) is not unique. To it may be added an arbitrary multiple of 

(6.3) 
n cos ( v -  1) 8 nsin (v-  1) 8 ] sin ( -- ) . 31’ = exp(- A(v - 1) rv-1 A(v - 1) rv-1 

(6.3) is a solution of Laplace’s equation and is zero on 8 = 0, and on a curve that 
approaches y = Axy as z+O. The local behaviour of the potential flow, (6.3), is 
seen to be transcendentally weak compared to the rotational solution, (6.1). 

The material of this section was worked out by Mr L. E. Fraenkel, to whom the 
author is grateful for many helpful discussions. The values of a, and /3, presented 
in table 1 were obtained with the aid of the Titan computer at the University 
Mathematical Laboratory, Cambridge. This research was carried out while the 
author was the recipient of an NAS-NRC Postdoctoral Fellowship supported by 
the AFOSR. 
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